El Kit del LT1083

Ja fa dies que tenia ganes de muntar un kit. Fer els teus propis dissenys i projectes està molt bé, però per això fa falta molt de temps, que és una cosa que no tinc. Entre les proves, els errors, els canvis, i el software, acaben passant moltes hores fins que no tens un aparell funciona. I aquesta vegada no em volia complicar, volia quelcom senzill, sense maldecaps. No hi ha res com una estona de soldador per relaxar-se!

Vaig estar buscant algun kit que m’atraiés, que no fos massa car i que una vegada muntat tingués la seva utilitat. Per fi, a la web de ICStation, en vaig veure un que em va cridar l’atenció. Barat, sense components SMD, i útil: perfecte.

pantalla kit LT1083
Clica aquí per anar a la pàgina del producte

És una placa amb un regulador per fer una font d’alimentació. Sí, ja ho sé, no és gens ni mica original, i potser massa simple o bàsic. Qui no ha fet això mateix amb un LM317 o un dels mítics 78XX? En aquest cas, però, hi havia un paràmetre que em cridava poderosament l’atenció: 7 Ampers!

Aquesta immensa capacitat de produïr corrent deixa molt enrere la meva venerable (ja ha fet 20 anys) font d’alimentació de taller basada en un LM317, que pot arribar a donar com a molt 1,5A en condicions òptimes. Per suposat que en tot aquest temps que fa que la tinc m’he trobat alguna vegada que he necessitat més corrent. I naturalment sempre va bé tenir una segona font al taller, de vegades fa falta alimentar un circuit (o dos circuits alhora) a tensions diferents.

O sigui que m’hi vaig llençar de cap. Total no era el que costava, i passaria una bona estona soldant, que era simplement el que pretenia. Vaig fer la comanda; aquest és sempre un procés senzill a la majoria de llocs, i aquest no va ser una excepció. Al final vaig pagar amb PayPal, també fàcil i ràpid. El preu, com ja heu vist, és força ajustat, tot i que en aquesta web hi ha constantment ofertes de tota mena (jo en vaig pagar bastant menys, crec recordar). A més, com ja heu vist, el transport fins a la porta de casa està inclòs al preu, tot són comoditats. Vaig aprofitar per demanar una altra cosa que em feia gràcia (i que possiblement sigui objecte d’un altre post en un futur), i a partir d’aquí a esperar.

Mentre no arribava el carter amb la bona notícia, tenia temps de sobra per pensar què en faria del kit, una vegada muntat. Una ullada a les característiques i components em faria agafar una idea general del que tindria entre mans. Anem a veure què hi posa, a la pàgina.

Description -> Descripció
Board size: 74mmx46mm -> En realitat fa 80x48mm, però no importa, és menys que una targeta de crèdit
DC input: 2.5V-38V -> D’acord, però millor l’alimento en alterna
AC input: 2.5V-27V -> Un bon marge, començo a buscar transformador…
DC output: 2.5V-35V -> Un marge molt raonable. En funció del transformador que hi posi, podré arribar molt més amunt que la meva pobra font, que arriba molt justa a 13V.
Maximum current: 7A -> Aquest número brilla amb llum pròpia, admeto que em va enlluernar. Amb aquesta corrent pots alimentar (i cremar!) quasi qualsevol cosa.
Input and output minimum differential pressure: 2.5V -> O sigui que podré pujar fins als 35V si li dono els 27V AC. Em sembla que mai m’han fet falta més de 24V però qui sap…

Listing -> Llista de components
KF301-2P x2 -> Els blocs de connexió per ficar-hi els cables.
10A10 rectifier diode x4 -> Això és un diode i la resta són parides! 1000V i 10A!
1N4007 diode x2 -> Aquests dos ja són més normalets, però no eren els que hi anaven, després us ho explico.
3MM LED Blue x1 -> El clàssic led per saber que tot funciona. A tensions altres és super-brillant.
4700UF/50V x1 -> Un bon tros de condensador per rectificar, si senyor.
470UF/50V x1 -> Aquest ja és més normalet…
10UF/50V x1 -> … i el germà petit.
5.1K resistor 0.25W x1 -> La resistència pel led.
100 ohm resistor 2W x1 -> La resistència més grossa. Espero que la potència estigui ben calculada, o aquest serà el punt feble de la font.
3296-10K variable resistor x1 -> El potenciòmetre per regular la tensió de sortida.
7A resettable fuse x1 -> Em sembla bona idea posar un fusible en una bèstia com aquesta. Ja tinc ganes de provar-lo…
LT1083 regulator (not original and old) x1 -> El cervell de la màquina, l’integrat que ho fa tot. Un moment, què? Que no és nou ni de veritat? Ara ja sabem per on petarà tot… En tot cas, tampoc no ens podíem esperar que el kit complet valgués com només l’integrat en una web normal, no? No cal que ens fem els tontos, l’integrat és pirata. A veure si funciona, al menys.

Parlant de l’integrat, aquest kit m’ha despertat la curiositat i me n’he baixat el datasheet, sempre és una lectura interessant. Sembla que aquesta és una bona bèstia, perquè negar-ho. No el coneixia, aquest xip, però penso que alguna altra vegada li trobaré una aplicació…

Us deixo l’enllaç al datasheet clicant aquí: LT1083

ARRIBA EL KIT

Després de tres setmanes d’esperar, el paquet per fi ha arribat. He obert la capsa i això és el que m’he trobat. Com podeu veure, l’embalatge del kit no pot ser més senzill: una simple bossa mini-grip, ni tan sols és antiestàtica.

102_0433

I aquest és el contingut de la bossa. És evident que no hi ha cap mena de manual, ni en “chinglish” ni tan sols en mandarí. M’hauré de refiar de la serigrafia; sort que és prou clara.

102_0437

El radiador i la placa de circuit imprès per l’altra cara. És una placa molt senzilla, amb pistes només per una cara.

102_0438

Ara un detall de les dues peces més grans. El xip ja venia collat al radiador amb un cargol, tot i que no estava pas apretat.

102_0445

La placa per la cara de les pistes. Ja es pot veure que són ben gruixudes, per aguantar tanta corrent. El xip realment sembla de veritat, és una bona imitació.

102_0446

HORA DE SOLDAR

Per fi arribar l’hora d’escalfar el soldador i agafar l’estany. Ja ho trobava a faltar…
Es comença sempre pels components més baixets, i llavors es va fent els més grossos. El primer pas és, doncs, soldar les resistències.

102_0447 102_0448

Tot seguit és el moment dels condensadors ceràmics, i després els diodes petits, però aquí em trobo el primer escull. Resulta que la serigrafia de la placa (i el llistat de components de la pàgina web) posa que són dos diodes 1N4007, però en realitat al kit hi havia dos diodes 1N4148. Aquests són més petits, són diodes de senyal i no de rectificació. Segurament no hi hauria cap problema posant aquests, pel que veig al datasheet només serveixen per protegir l’integrat de corrents inverses. Però ja que en tinc aquí, de 1N4007, em decanto per soldar-hi els que toca. Mireu la diferència que hi ha: a l’esquerra els 4007 -més grossos i de color negre- i a la dreta els 4148 -amb el seu color transparent característic-.

102_0451

Superat el dubte, segueixo soldant els components un per un. Les indicacions de la placa són clares, i els forats suficientment grans. Un kit ben fàcil de muntar. A la foto ja està quasi tot soldat. “M’encanta la olor de l’estany al matí!”

102_0452

El condensador gros s’ha de muntar al final. Aquí ja només falta el xip. En aquest punt m’he aturat, ja que si soldo el xip el radiador em taparà els forats de la placa, i ja no la podré muntar enlloc. Fixeu-vos-hi.

102_0453

O sigui que munto quatre separadors hexagonals de M3, amb les seves femelles i volanderes perquè quedin ben fixes.

102_0454 102_0455

El següent pas és soldar l’integrat. Només cal tenir en compte la posició i la mida del radiador per saber a quina alçada ho hem de fer. Una vegada soldat, ja li podem posar el radiador de manera definitiva. Abans de fer-ho, però, cal posar pasta tèrmica entre les dues peces. Això millorarà enormement la capacitat de dissipació de l’integrat i, per tant, la canya que li podrem donar sense que mori carbonitzat.

102_0459

I aquí el teniu, bo i acabat!

102_0462

Com podeu veure, el radiador no toca els separadors que he muntat a la placa. Això té un sentit, ja que normalment aquesta mena d’integrats tenen la dissipació en una part activa, i el kit no portava cap aïllament per posar entre l’integrat i el radiador. Això vol dir que ara mateix el radiador està connectat elèctricament a una de les potes (caldria mirar quina al datasheet).

També he canviat el cargol que portava el kit de sèrie per un d’una mica més llarg, així he pogut posar una volandera i collar el radiador ben fort. Com a detall he de dir que el condensador més gran queda just davant el cargol, i costa una mica de collar des d’un costat. Hauria d’haver deixat el condensador gros pel final, o muntar el radiador al regulador abans de soldar-lo; però tampoc no hauria estat massa còmode soldar el xip amb el radiador posat, és massa voluminós.

Un últim detall que vull comentar. Hi ha una altra cosa molt recomanable per fer, i és cobrir les pistes de la placa amb estany. Això permetrà que passi més corrent per les pistes sense que s’escalfin o es cremin. Aquest és un vell truc de l’ofici, que personalment recomano, sobretot amb les plaques de les que desconeixem el gruix de la capa de coure. Jo diria que el fabricant de la placa ja és el que vol, sinò hauria cobert les pistes amb “solder mask” perquè no es fessin malbé amb el temps. Un bon gruix d’estany farà la mateixa funció, alhora de permetre que els electrons corrin lliures en multitudinària processó…

102_0458

LES PROVES

De moment les proves que he fet són molt bàsiques. Només he comprovat el funcionament sense càrrega, posant a l’entrada del kit 25,5V de corrent altern provinents d’un transformador endollat als 230V de la xarxa. Amb el tester (multímetre!) a la sortida, he pogut veure des de 1,25V fins a 33,9V en contínua.

El led (que és blau i molt brillant) s’encén correctament, tot i que per sota dels 3V de sortida s’apaga, evidentment.

Per fer pujar i baixar la tensió de sortida només cal fer girar el potenciòmetre del kit. Des del punt més baix fins al més alt he comptat 15 voltes completes. Aquest fet té l’avantatge que es pot graduar amb molta precisió la sortida, però l’inconvenient que es tarda molta estona dels 5V als 24V per exemple, cal fer moltes voltes. A més, el potenciòmetre és tan petit que el cargol sobre el que cal actuar és diminut, fa falta un tornavís de rellotger.

És evident que em falten una bona colla de proves per fer. La prova de funcionament sense cap càrrega no té gràcia, el kit haurà de demostrar el que val tot donant corrent a sac. Llavors podré mesurar l’arrissat de la tensió a la sortida, la capacitat tèrmica del radiador, i moltes coses més. Tinc ganes de provar aquest fusible, també, és molt temptador demanar-li uns quants watts al xip. També caldrà veure què tal funciona el mecanisme de protecció per sobre-temperatura del regulador. Dubto que aquest radiador pugui dissipar gaire potència, potser n’hi posaré un de més gran… Ara mateix tot això no ho puc fer, ja que el transformador que tinc és molt petit: abans de cremar el regulador cremaré el transformador, i no es tracta d’això.

Què sé jo, ja em rumiaré tot el que en puc treure, d’aquest kit. La idea bàsica és fer-ne una font d’alimentació de taller, una que tingui una bona capacitat. Però per això farà falta un bon transformador, una caixa maca, potser un voltímetre i un amperímetre… I per suposat un (o dos) potenciòmetres de panell, per regular la tensió còmodament com cal.

Ja us en tindré informats, de moment el pla d’avui només era passar una estoneta soldant tranquil·lament tot escoltant música!

Fins la propera!

El mòdul del xip L298

Si voleu controlar motors de corrent contínua de baixa potència des d’un microcontrolador o circuit lògic, us farà falta un transistor potent, un mosfet, un darlington, o uns quants de cada. Si el que voleu és que aquests motors vagin endavant i enrere, com per exemple per controlar el moviment d’un cotxe ràdio-controlat o un robot, necessitareu muntar un circuit que es diu “pont en H”. I si el que voleu és tenir tot això integrat en un sol xip que ho té tot controlat, tard o d’hora anireu a parar a l’L298. Aquest integrat és un clàssic entre els constructors de robots d’arreu del món des de fa molt de temps, i no per res, sinó perquè és senzill, barat, robust, i fiable. I a més es troba en format “thru-hole”, el preferit dels aficionats!

dibuix L298N

Anem a veure què fa aquest xip, i com ho fa. El títol del datasheet és “Dual full-bridge driver”, que vindria a voler dir que hi ha dos ponts en H que subministren corrent, si fa no fa. Només cal veure l’esquema intern (“block diagram”) per identificar de seguida els dos ponts, tal com els heu vist a l’enllaç que us he posat de la viquipèdia (Com? Que no ho heu llegit?). A partir d’aquí es tracta de veure quina és la capacitat màxima de l’integrat, sobretot quant a tensió i corrent, ja que els motors, per petits que siguin, s’enfilen de seguida en aquests paràmetres.

Diu la fulla de dades que la tensió màxima que pot controlar l’L298 són 46V, que no és pas poc. La corrent pot arribar a 4A, de manera que amb aquest animalet podem moure motors força importants. Però això no vol dir que podem fer el que volem per sota d’aquests màxims, hi ha altres coses que hem de tenir en compte. Si llegim una mica més avall, veiem que els 4 ampers que dèiem fa uns moments són en realitat 2 per canal, que podem sobrepassar només durant períodes molt curts de temps. I també hem de tenir en compte la potència màxima que dissiparà el xip, 25W. Però aquesta dada porta implícita una condició, la temperatura no pot superar un cert valor. Per això és important que aquests xips portin als nostres muntatges radiadors per mantenir-se freds. Ara no entraré en càlculs ni en teories perquè no és el propòsit d’aquest post ni d’aquest blog, però feu-me cas, quan feu muntatges amb molta potència, tingueu en compte que la temperatura sempre és un factor limitant: és el que al final acaba fregint els components!

Des del punt de vista de l’ús que li podem donar a l’L298, aquests dos ponts H que hi ha integrats al xip es poden fer servir per diverses coses. La més evident és controlar dos motors alhora, però també es poden controlar solenoides, motors pas a pas, i tot el que se’ns acudeixi.

Suposem que us ha agradat aquest xip i el voleu provar, quina seria la manera més senzilla? Doncs comprant un mòdul, és clar! Que no recordeu el meu post al respecte? Us ho recordaré, doncs: es tracta de buscar “L298N module” a l’ebay o l’aliexpress, cercar per tot el món, ordenar per preu i transport, i finalment trobar una cosa com aquesta:

pantalla mòdul L298N ebay

En veureu molts, però no us espanteu que quasi tots són idèntics. Jo per posar la foto aquí n’he triat un a l’atzar; com podeu veure, per menys de tres dòlars ja el tens (2,18€ al canvi d’ara mateix), i a més te l’envien a casa des de l’altra banda del món. He mirat als distribuïdors habituals què em costaria només el xip, aquests són els resultats. Digikey: 3,77€. Farnell: 4,95€. Mouser: 3,74€. Cap d’ells inclou el transport, és clar. Quincalla xinesa, recordeu?

Al final jo en vaig comprar un altre, d’un proveïdor que ja li he comprat altres coses i és ràpid i fiable. Us poso un PDF amb totes les característiques que hi havia a la pàgina de l’article. Si us ho mireu, veureu que l’esquema d’aquest mòdul no deixa de ser el que recomana el datasheet del xip (figura 6, només es representa la meitat del circuit) amb alguns afegits. La part fonamental és el xip L298N en un encapsulat “multiwatt” (que és el que dóna la “N” al final del nom) que dissipa molta potència, junt amb el seu radiador d’alumini negre reglamentari; els vuit diodes recomanats, i connexions per les entrades i sortides. Com a extres hi ha un regulador a 5V amb els seus condensadors i un led indicador, per si volem alimentar el circuit lògic aprofitant la tensió que farem servir pels motors. Hi ha dos “jumpers” o ponts per connectar o desconnectar les potes que permeten els moviments de cada motor, això no cal ni tocar-ho. L’entrada d’alimentació dels motors, que són dos borns (massa i positiu), i un de sortida pels 5V del regulador que ja he esmentat (la massa o GND és comú a l’alimentació dels motors). La resta són dos borns de dos pols cadascun, un per a cada motor, que es troben a cada banda de la placa del mòdul. Tot seguit us explico com ho he cablejat tot plegat, mireu-vos primer les fotos.

tot el conjunt

el boarduino al protoboard el cablejat del mòdul

Com podeu veure, he posat un motor DC a cada born de sortida del mòdul, que podré controlar individualment. Aquests motors provenen de dues impressores de tinta HP que vaig tenir al marbre d’autòpsies fa un temps. Com que no en tinc les característiques, els he provat abans. Sembla que poden anar bé fins a 24V, però no cal forçar-los tant, a més la meva font d’alimentació casolana no puja tan amunt. Els he provat a 12V, que a més de ser un valor molt habitual sembla una tensió segura pels motors. En buit (deixant-los rodar lliurement sense cap càrrega a l’eix) consumeixen uns 60mA. Si intento frenar l’eix amb els dits, provocant fregament, aquesta corrent puja de seguida a uns quants centenars de miliampers. Si freno completament l’eix del motor, la corrent que demana a la font és d’uns 900mA, quasi un amper. Sembla que en tot moment ens trobarem dins els límits segurs del mòdul i de la font (bé, si freno els dos motors alhora no, la font dóna 1,5A com a molt).

Els 12V que surten de la font d’alimentació van directament al mòdul dels motors. A la sortida del regulador del mòdul, que dóna 5V, hi he penjat el meu fidel Boarduino, que faré servir per aquesta prova. Entre l’Arduino i el mòdul de l’L298N hi he posat un cable amb quatre pins, un per cada entrada, que he hagut de fer a mida: una mica de cable pla multifilar que no recordo d’on va sortir, un connector femella tallat a mida (i ben llimat, que l’espai al mòdul és molt just per culpa dels jumpers) i una mica d’estany i tub retràctil. La connexió al protoboard ha estat un moment: els pins que controlaran els motors seran del 8 a l’11, la sortida del regulador del mòdul va al pin “5V” de l’Arduino, i he unit les masses (GND). Finalment és hora de fer un petit programa amb l’IDE de l’Arduino per a provar-ho.

// dosmotors.ino
// escrit per serkeros (serkeros.wordpress.com)
// febrer 2014
// llicencia -> creativecommons.org/licenses/by-nc/3.0

void setup()
{
  pinMode (8,  OUTPUT);     // establir els pins com a sortida
  pinMode (9,  OUTPUT);
  pinMode (10, OUTPUT);
  pinMode (11, OUTPUT);

  digitalWrite (8,  LOW);   // començar amb els dos motors parats
  digitalWrite (9,  LOW);
  digitalWrite (10, LOW);
  digitalWrite (11, LOW);
}

void loop()
{
  digitalWrite (8,  HIGH);  // engegar motor esquerre
  delay(1000);              // esperar un segon
  digitalWrite (8,  LOW);   // parar motor esquerre
  digitalWrite (10, HIGH);  // engegar motor dret
  delay(1000);
  digitalWrite (10, LOW);   // parar motor dret
  delay(1000);
  digitalWrite (9,  HIGH);  // engegar motor esquerre al reves
  delay(1000);
  digitalWrite (9,  LOW);   // parar motor esquerre
  digitalWrite (11, HIGH);  // engegar motor dret al reves
  delay(1000);
  digitalWrite (11, LOW);   // parar motor dret
  delay(1000);
  digitalWrite (8, HIGH);   // engegar tots dos motors alhora
  digitalWrite (10, HIGH);
  delay(1000);
  digitalWrite (8, LOW);    // parar els dos motors
  digitalWrite (10, LOW);
  delay(1000);
  digitalWrite (9, HIGH);   // engegar tots dos motors al reves alhora
  digitalWrite (11, HIGH);
  delay(1000);
  digitalWrite (9, LOW);    // parar els dos motors
  digitalWrite (11, LOW);
  delay(1000);
}

Si llegiu el codi font us adonareu que no m’hi he trencat el cap: engegar un motor endavant, després l’altre, després al revés, els dos alhora… Ben senzill, però ja veieu que funciona. Ara imagineu una roda a cada motor i ja teniu el sistema locomotor del vostre primer robot. Fàcil, oi?

Una altra cosa seria que volguéssim controlar la velocitat de gir dels motors, això ja és una mica més complicat, tot i que amb l’Arduino no us penseu que gaire. La manera més fàcil de fer-ho, contra el que pugui semblar, no és regular la tensió als motors; és fer servir impulsos d’amplada controlada, o PWM en anglès. Si no sabeu de què va això del PWM millor que us llegiu l’article de la viquipèdia, però si us fa mandra us en faig un resum ràpid. Es tracta d’un senyal digital (uns i zeros) a una freqüència fixa (ara mateix no importa massa quina, però prou ràpida), dins la qual la proporció de temps de 0 i 1 es pot variar. D’aquesta manera, si és tot zero (0%) el motor està parat; i si és tot 1 (100%) el motor funciona al màxim. La gràcia però és que podem triar qualsevol estat intermig (per exemple, el 50%, en la que hi hauria la mateixa estona de 1 i de 0, o el 75% on hi hauria tres temps d’1 per cada temps de 0). En l’entorn Arduino és molt fàcil implementar el PWM, com ja he dit, només heu de llegir el funcionament de l’ordre “analogWrite”. En essència, el nostre PWM té 8 bits de resolució (podem donar valors de 0 a 255, més precisió que 0,5%). Mireu-vos aquest codi que he escrit i el resultat que ha tingut als motors. Adoneu-vos que hi ha hagut un petit canvi al hardware; com que no tots els pins de l’Arduino poden donar una sortida PWM, he canviat les connexions. Ara un motor es controla pels pins 5 i 6 (abans el feia anar amb el 8 i el 9), mentre que l’altre segueix amb els pins 10 i 11.

canvis al cablejat

// dosmotors_pwm.ino
// escrit per serkeros (serkeros.wordpress.com)
// febrer 2014
// llicencia -> creativecommons.org/licenses/by-nc/3.0

void setup()
{
  pinMode (5,  OUTPUT);              // establir els pins com a sortida
  pinMode (6,  OUTPUT);
  pinMode (10, OUTPUT);
  pinMode (11, OUTPUT);

  digitalWrite (5,  LOW);            // començar amb els dos motors parats
  digitalWrite (6,  LOW);
  digitalWrite (10, LOW);
  digitalWrite (11, LOW);
}

void loop()
{ int gas;                           // variable on posarem el valor del PWM

  for (gas = 255 ; gas > 0 ; gas--)  // motor esquerre de gas a fons a parat
    {  analogWrite (5, gas);
       delay(20);
    }
  digitalWrite (5,  LOW);            // parar del tot el motor esquerre
  delay(2000);                       // espera dos segons
  for (gas = 255 ; gas > 0 ; gas--)  // ara el mateix en sentit contrari
    {  analogWrite (6, gas);
       delay(20);
    }
  digitalWrite (6, LOW);             // parar del tot el motor esquerre  
  delay(2000);
  
  for (gas = 255 ; gas > 0 ; gas--)  // ara el mateix amb el motor dret
    {  analogWrite (10, gas);
       delay(20);
    }
  digitalWrite (10,  LOW);
  delay(2000);
  for (gas = 255 ; gas > 0 ; gas--)
    {  analogWrite (11, gas);
       delay(20);
    }
  digitalWrite (11, LOW); 
  delay(2000); 
}

Bé, ja veieu que és ben útil, aquest xip; i amb aquest mòdul, resulta molt fàcil incorporar-lo als vostres invents. Jo per part meva en penso encarregar algun més, ja que són molt útils i ràpids d’aplicar. Em faltaria explicar-vos com utilitzar-lo per a controlar un motor pas a pas, però aquestes bestioles ja són figues d’un altre paner i ara no em vull enrotllar més. Ho deixem per un altre dia, d’acord? De moment podeu trobar totes les fotos penjades al flickr, com sempre. A reveure!